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Abstract #

Numerical methods for approximating solutions of two-point
boundary-value problems for ordinary differential equations are
surveyed. Specific complete algorithms are classified according to
how the original problem is transformed, how the transformed problem
is modeled discretely, and how the discrete model is solved. Relation-
ships among various complete algorithms are presented. Convergence
acceleration, error estimation and control, and parameter selection
are also discussed.
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1. INTRODUCTION

I intentionally avoided calling this paper a "survey" because, having
once worked as a surveyor, I know that a survey of a city gives an extremely

detailed description of the precise layout of the property in that city
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and is not very helpful to someone trying to find his or her way around
town. Analogously, presenting all the details of various implemented
methods for solving boundary-value problems can obscure the concepts.
It is also true, however, that a coarse aerial photograph of a city is
a poor guide for the lost traveler, and, analogously, a very abstract
model representing all methods for boundary-value problems is too general
to impart much information. What both the traveler and the student of
numerical methods need is a useful roadmap with not only enough detail
to show the various points of interest but also enough perspective to
show where these sites lie in relation to one another. Here I present
my own such roadmap of what some numerical methods for boundary-value
problems are, of how they relate to one another, and of what areas need
development in order to improve methods. (My use of "I" as the first
word of this paper is also intentional: the reader is to be warned that
this is the personal view of one individual.)

Now, what kinds of boundary-value problems are we to consider? 1In
the spirit of the first paragraph I want to present neither a single
abstract problem including all cases nor a vast list of specific special
problems. I will discuss instead a couple of model problems for which
the solution methods will share many features with methods for the
panorama of distinct problem types: eigenvalues, non-linear boundary
conditions, m~th order equations, systems of equations for vector-valued
functions, mixed-order systems, infinite-intervals for the independent
variable, singular problems, singular-perturbation problems, multi-point

boundary conditions, et cetera. I will consider both the first-order

system for the nx1 vector valued function y:
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(1.1) Z'(c) = f(t,z(t)) for 0<t<1

and the second-ofder scalar equation:

(1.2) y"(t) = £(t,y(t),y"(£)) for O<t<1

since numerical methods on the first-order system equivalent to (1.2)
usually are dramatically less efficient than methods directly intended
for second-order problems; note that I restrict myself to a finite range
for the independent variable and I use 0< t<1 as a canonical interval.

Boundary conditions for (1.1) are given by n nonlinear equations

involving y(0) and y(1):

(1.3) b(y(0) , y(1)) = 0

in vector notation. For (1.2) we give two nonlinear equations relating

y(0), y'(0), y(1), and y'(1l), which we can express in vector notation:
(1.4) c(y(0), y'(0), y(1), y' (1)) = Q.

In many cases the boundary conditions will in fact be linear, in which

case we replace (1.3) with
1.5 Boz(®) + By = ¢
where B, and B, arenxn and e is nx1, while we replace (1.4) with

20 =1

(1.6) Sov(0) + doy'(0) + ¢,y(1) +d;y'(1) = g

i
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where <o’ 40’ g 41' and a are all 2x1; these special forms can
bt~ useful computationally. Another common and computationally advan-
tageous situation is that in which the boundary conditions are separated,
so that conditions at t=0 and at t=1 do not interact. In this

case we can write (1.3) and (1.5) as
(1.7) Boy(0) = go, Biy() = ¢

where 1&0 is qxn, El is (n-q) xn, o is qx1, and ¢ is (n-q) x1,

1
for some integer q with 1<q<n. Similarly (1.4) and (1.6) become in

the separated case
(1.8) coy(O) + doy'(O) = a,, cly(l) + dly'(l) =a;.

Thus we will be considering either (1.1) with one of the boundary conditions
(1.3), (1.5), (1.7) or (1.2) with one of the boundary conditions (1.4),
(1.6), (1.8). 1In the interest of time and space we often will discuss

a method as applied to either the first-order or the second-order problem
when the analogous use of the idea of the method for the other standard
problem is fairly straightforward.

The next task and the main task of this paper is to describe how to
classify various methods. The "aerial photograph" approach would be to
note that the problem is simply to solve E(¥) = 0 for x in some
appropriate abstract space and F some nonlinear operator, while numerical

methods eventually solve some discretization Eh(ih) =0 for % in

h
some discretized (finite-dimensional) space; this doesn't really tell us
much about the structure of various specific methods. The "survey"

approach would be to describe computer codes implementing various specific
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methods; this gives us more detail than we can absorb. Instead I will
give a "road map" approach which defines a complete method as having

three aspects:

1) a Transformed Problem,

2) a Discrete Model of the Transformed Problem, and

3) a Solution Technique for the Discrete Model.

In Section 2 of this paper I describe various Transformed Problems
equivalent to (1.1) or (1.2) and their boundary conditions. Section 3
presents approaches for creating Discrete Models, while Section 4 outlines
some Solution Techniques. In Section 5 complete methods generated
by different choices of 1), 2), and 3) above are compared and some are
shown to be equivalent to others. Sections 6 and 7 briefly discuss the
important notions of accelerating convergence and estimating errors, and
of controlling errors by selecting the parameters upon which various
complete methods depend. A brief conclusion appears in Section 8.

Section 9 contains a brief collection of references. Since I am not
attempting here to give a historical or developmental view of methods,
I will not present a detailed bibliography but rather will indicate
selected references where more detail and more references may be found.
Good general sources of references are [Keller (1968, 1975), Aktas-
Stetter (1977) ].

I thank the many colleagues, especially Victor Pereyra and Andy White,
who over the years have influenced my view of numerical methods for
boundary-value problems. Although I would gladly blame mistakes on my
colleagues and take credit for any insights, unfortunately I must accept

responsibility for all the views expressed in this paper.




2. TRANSFORMED PROBLEMS

The basic notion of this paper is that a complete method can be
viewed as the straightforward application of a fairly standard discreti-

zation process to a Transformed Problem that is equivalent to the original

boundary-value problem. From this perspective we will describe the
classical shooting method, for example, as the application of standard
numerical methods for initial-value problems and for nonlinear equations
to the Transformed Problem of finding the proper initial values so as to
satisfy the boundary conditions. In this Section we examine several

Transformed Problems.

2.1 No transformation. For completeness we mention the trivial case of

applying no transformation, so that the Transformed Problem and the
original problem coincide. This allows us to discuss complete methods

which appear to be frontal assaults on the boundary-value problem.

2.2 Variational problems. Many boundary-value problems arise in the

physical sciences as the variational or Euler-Lagrange equations for
problems in the calculus of variations [Courant-Hilbert (1953)]. For

example, consider the problem of minimizing

1
(2.) syl = [ (1 6" @)+ Ryl
0

for all sufficiently smooth functions y satisfying the linear and

separated boundary conditions
(2.2) y(0) = a, y(1) = b .,

Then the theory of the calculus of variations shows that

L=




(2.3) y"(t) = f(t,y(t)) for 0<t<1, y(0) = a, y(1) = b

where f(t,y) = g%'F(t,y). Thus the calculus of variations problem of
minimizing J in (2.1) reduces to a special form of the boundary-value
problem (1.2) in which no y' term appears. Conversely, certain
boundary-value problems (2.3)--for example, those in which %5-20 for
all t and y--are equivalent to minimizing J[y] and are perhaps more
naturally described as such variational problems. In this case, we

change the original boundary-value problem to the Transformed Problem:

find a function y minimizing J[y] in (2.1) subject to conditions (2.2).

2.3 Shooting and its variants. We consider first here the simplest form

of shooting applied to the first-order system (1.1) with boundary condi-

~

tions (1.3), that is

y' = £(t,y), for 0<t<1, b(y(0),y(1)) =0 .

We choose an initial-value vector z that is nx1 and let y(t;g) solve

(1.1) subject to the initial condition

y(052) = z .

The original problem now can be restated as the Transformed Problem: find
an nx1 vector gz so that h(;,z(l;;)) = 0. We have replaced a boundary-
value problem for differential equations with a single system of nonlinear
equations (and an intermediate problem of finding x(l;g)). It is easy to
see one of the potential difficulties in using simple shooting (independent
of the numerical technique used to compute z(l;;)) by examining a variant

of shooting called superposition [Scott-Watts (1977)].
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Suppose that our first-order system (1.1) is linear with linear

boundary conditions (1.5) so that

(2.4) y'(t) = é(t)Z(t) + 3ty for O<t<l, 202(0) + glz(l) =

o

where A is nxn. We let Z(t) be the nxn fundamental solution matrix

satisfying

() = &(e)Y(t) for O<t<l, I(0) » 1

and let the nx1 vector p be any particular solution to

p'(t) = A(t)p(t) + g(t) for 0<t<l .
Then every solution to (2.4) is of the form
every ¥

€2.5) Z(t) = =I;:(t:) + }_{(t):_c for 0<t<1

for some nx1 vector X independent of t; this representation merely
writes y as p plus a linear combination of a linearly independent

set of solutions to the homogeneous equations. The boundary conditions

now merely become the linear algebraic equations for x:
(By+B,X(1)Ix = - Byp(0) -B,p(1) .

To determine x it is essential of course that B,+B,Y(1) be non-
singular; the difficulty can be that the numerical computation of Y

causes the crucial matrix to become singular. For example, while

I TR RS §
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10t 10t =10t
e e -e

-si £
e10t_e-10t elOt is non-singular for every t, because of

rounding errors a computer representation of this matrix will become

10t 10t
e e

the singular matrix elOt elOt for t much larger than unity.

Thus simple superposition can have difficulties; since from (2.5) we see
that Z(O) = g(O)-Fg, the coefficients x are nearly the initial values
z of shooting, and indeed x=2 if 2(0) =2, so we see that the same
potential difficulty is inherent in shooting.

From the shooting viewpoint, a way out of this problem is multiple
shooting [Keller (1968] in which we we simultaneously shoot from k

distinct t values 0=Tl< <Tk<1. That is, for arbitrary nx1

p €3¢ ' -
vectors z;, %y we let Zi(t,gi) for 131Sk solve Zi(t) g(t,zi(t))

(with T

for Ti <E <t =1) subject to the initial conditions

i+l k+1

yi(Ti;gi) =z The original problem now can be restated as the Transformed

Problem: find k nx1 vectors Zys'"sZy SO that g(gl,zk(l;gk)) =0,

. - Ca I "
xi(T1+l’£i) £i+l for 12ifk-1l, a system of kn equations for the kn

unknown cemponents of The hope is, of course, that the z

EOLRRERY W zy
and T1 can be chosen so shrewdly that the numerically singular matrices
mentioned in the preceding paragraph do not arise.

From the superposition viewpoint we can use multiple starting points

= < € see £ < < <
Tl 0 Té Tk 1 as well. We merely represent ¥ for Ti..t _T1+1

by z(t) = !1(t)51 + Ei(t) where Py is a particular solution of the

inhomogeneous equation on Ti <t‘<T1+1 and xi is a fundamental solution

! = = -
there solving xi é(t)x1 with zi(Ti) xi,O for some given non-singular
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matrix 11,0'

QOX(O)-+§1z(1) =e and the continuity conditions for Z(Ti) which become

= <4
(2.7) Py (T + ¥, (T35, Bi(Ti).+¥i,0§i for' 2543k,

we see that we again have kn (linear) equations for the kn unknown

components of ESERRREY W Since Ei1 and x; are the unknowns in (2.7)

we see that the system of linear equations we must solve is essentially

block bi-diagonal with Y (Ti) and Xi 0 appearing as the blocks.

i-1
Just as for simple shooting and simple superposition, if we choose 31 0-=;
’
and pi(Ti) =0 then the coordinates Xy in multiple superposition equal
the initial values 4 in multiple shooting. Other choices of Zi 0 and
’

pi(Ti) are possible however. 1In the so-called re-orthogonalization method

Recalling that we need to satisfy the linear boundary conditions

[Scott-Watts (1977)], Y =1 and each subsequent Y is chosen as the

1,0

(Ti)' Thus we decompose

1,0

Gram-Schmidt orthogonalized version of !i-l

23-1(Ty) as
13-1(T9) =Ry

for orthogonal Qi and upper-right triangular R. and then let Xi(Ti) =

i
xi 0 EQi' In this case the equations (2.7) for the coefficients

xl"'.’§k become

B1-1(Tg) +QsRyXq_1 =0+ 04Xy »
and multiplying by the inverse gf of the orthogonal matrix Q1 gives

T
(2.8) Q By =X

(Ti)+ Rix Xy

i-1
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Thus in the case of the re-orthogonalization method the nearly block

bi-diagonal matrix describing the equations for LSRR S has the

very simple blocks I and 51, making solution of the system quite simple.
Whatever variants we take of simple shooting, they all reduce the

original boundary-value problem to a Transformed Problem of determining

a finite set of numbers--z or x or 51’."’§k or él,"',é .

2.4 Quasi-linearization. Mathematicians are well known as people who, when

they cannot solve a certain difficult problem, instead solve some easy pro-

blem in the hope that this will somehow be profitable. Quasi-linearization

(Bellman-Kalaba (1965)], often known as Newton's method, is the application

of this ploy to create Transformed Problems simpler than an original diffi-

cult nonlinear boundary-value problem. The idea is that, given one approximate

solution Zi(t) to the first-order system (1.1), with general boundary

conditions (1.3), we approximate the differential equation (1.1) for Y

near y. by the linear (in zi+l) differential equation '

of
(2.9) Lia1 (© =EE7 (6 + 50 (63, () (g4 (-3, (D),
of

where az is the nxn Jacobian matrix of £ with respect to Y. Similarly

we approximate the boundary conditions (1.3) by the linear (in yi+1) boundary

conditions
B(Y; €05z (1)) + By 1 (F441(0) =2, O + By 4 gy (D) -3, (AN =0
ab
) |
L B, g BEg(®3, @) ’
e

The equations (2.9), (2.10) comprise a linear boundary-value problem for f i; i
Yi+1 of the same form as (2.4). As usual with Newton's method, the hope
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is that the sequence of functions ZO’Zl"" converges to Z solving
(1.1), (1.3); under reasonable conditions on g and 2 this does indeed
occur if the initial guess ZO(t) is sufficiently close to Z(t). Thus
we have reduced the original nonlinear boundary-value problem to the
Transformed Problem: solve a sequence of linear boundary-value problems
for Yor¥yr--- converging to y-

At this point notice that we can easily speak of Transformed2 Problems
whenever the Transformed Problem is transformed again; this occurs for
example if we use shooting or superposition as in Subsection 2.3 to solve
each of the linear boundary-value problems (2.10). Some methods designed

only for linear problems can thus be used with quasilinearization on

nonlinear problems [for example, see Scott (1975), Scott-Watts (1977)].

2.5 Continuation and embedding. In many real probiems the differential

equation (and perhaps the boundary conditions) depends on certain physical
parameters, and solutions are desired over a range of v#lues of these
parameters. If this is not the case, it is usually possible to think of

the problem as being for ome specific value, say AF, of some physically
meaningful parameter A which we can imagine being allowed to vary. In

rare instances an artificial parameter may need to be introduced by, for
example, considering z' =§(t,z) as the problem when A =XF,=1 is sub-
stituted in the equation Z"=A£(t,z). In any case we suppose that we have a

family of differential equations

(2.11) y' = £(t,y50)

whose solution y(t;A) is especially desired for A = AF and perhaps for

many other values of A as well.

o —————
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In the continuation method we assume that (2.11) can be solved

easily for some value AO of the parameter. Assuming A0‘<AF for
convenience, we then set out to solve (2.11) for a sequence of k values
of A, say Al =AO<A2 < v <Xk==AF. )5 Ai+1 is "near" Ai’ the hope 1is
that (2.11) for /A =A1+l can be solved fairly easily by making use of
the already obtained solution Z(t;k ) at A =Ai. Thus we have replaced
the original boundary-value problem (1.1) by the Transformed Problem:
solve (2.11) for a sequence Ao,ll,"',kk of values of the parameter ).
This is a useful device whenever one can use Yy to advantage in obtaining
Yi41} since any numerical method will require solving some nonlinear
equations for the approximation to Vi1’ the approximation obtained for
y; can usually be used as the first iterate in an iterative method for

solving these nonlinear equations for For example, quasi-linearization

Yi41
might be used on (2.11) at A =A1+l with the solution at A =A1 as the
starting iterate.

Another approach to solving (2.11) for A =XF is to use the embedding
method [Scott (1973,1975)] which derives differential equations for the
dependence of z(t;l) on A. While this usually results in nonlinear
partial differential equations for y as a function of t and A, the
side conditions often can be chosen to be initial conditions since we
assumed the problem to be easily solved initially at A"Ao. Thus the
original ordinary differential equation boundary-value problem is replaced
by the Transformed Froblem: solve an initial-value problem for a partial
differential equation involving Y as a function of t and ).

A wide variety of these embedding methods have been used depending

on precisely how ) enters the differential equation. A very common

practice is to use the interval length over which t varies as the

= sda el ke 8 el S e S
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embedding parameter; it is for this case that I will restrict the use of

the broad term invariant embedding [Scott (1973,1975)]. Thus we think

of the family of problems defined for 0<t<)A and we let A range from

zero to unity. For (1.1) subject to (1.3), for example, we instead consider

y' = =f(t:,y) for 0<t <X with 2(2(0),2(?&)) = 0.

When A =AOEEO this reduces to the system of n equations E(Z(O)’Z(O)) =0
for the n unknown components of Z(O;Xo) which is assumed to be our

"easy" problem. When the original differential equation (or boundary con-
dition) is nonlinear, invariant embedding yields a nonlinear partial
differential equation. To avoid this difficulty the computationally most

‘ successful approach appears [Scott (1973, 1975)] to be to develop invariant
embedding for linear problems (which turn out to lead to ordinary differen-
tial equations when invariant embedding is used) and then to use quasi-
linearization as a device for replacing nonlinear problems by a sequence

of linear problems, each of which is transformed and solved by invariant
embedding; of course this can be viewed as just one possible device for
solving the nonlinear partial differential equation. For the rest of this
section we restrict ourselves to a consideration of the linear second-order

equation

(2.12) y"(t) +p(t)y'(t) +q(t)y(t) =g(t) for O<t<A

subject to separated linear boundary conditions

(2.13) gy (0) +dyy' (0) =aj, ¢, y(\) +d;y' (M) =a,

as in (1.8); the solution to (2.12), (2.13) is y(t;)) and it is desired

Sy




il

for 0S) 1. General linear boundary conditions can be handled as well.
The simplest invariant embedding method for (2.12), (2.13) is the

sweep or factorization method in which we introduce two auxiliary functions

a(t) and R(t) for 0<t<1 and set y'=qy+R; it turns out that o

and B must satisfy

g

o (£) ==q(t) - p(t)a(t) —a’(t) for O<t<1, a0) = —>

0

(2.14) ag
g'(t) =g(t) - (p(t) +a(e))p(t) for O<t<l, B(0)=

0

(1f d0=0, a slightly different method is used.) Having computed ¢ and
B from (2.14), applying y'=qy+B8 at t=) along with the boundary
condition cly()\) +d1y' ) =a; gives us two linear equations which we
solve for the unknowns y()A;3;\) and y'(A;A). Having found y()\;)A) and

a(t),g(t) for 0<t<)A<1 we finally solve
(2.15) y'(t;2) = a(t)y(t;A) +B(t) for O<t<)

in the backward direction starting from the recently found value y()\;)\)
for y(t;A) at t=). This gives the desired solution y(t;)) for
0sts)A. Note that the initial-value problems for o and { need only
be solved once. Thereafter, to find y(t;A) for any A only requires the
soclution of the two linear algebraic equations for y()\;)) and then
integration of one backwards initial-value problem (2.15) for y.
Experience has indicated [Scott (1975)] that a somewhat more complex
invariant embedding method is better than the sweep method above. In

this version four auxiliary functions Tys Tps 81 and s, are introduced

in such a fashion that

PR R
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y(t;A) = rl(t)y' (£5)) +1,(t)
(2.16)
y'(05)) = sl(t)y' (£31) +8,(t)

From (2.16) we see that if we know T)s Ty Sy and s, for 05t<1

2
and if we know y'(0;)\) then (2.16) gives

y'(03)) -5,(t)
sl(t)

(2.17) y(t;\) =1’l(t) +r2(t)

which expresses y(t;A) in terms of known quantities. To determine
(0
T1» Tgs 815 Sy and y'(0;)\) we proceed as follows. We find T1s Tys 815 S,

for 0StZ1l by solving the initial-value problems

/
r}(e) = l+p(t)rl(t)+q(t)r§(t), r, (0) =0,
ré(t) = q(t)rl(t)rz(t), r2(0) =1,
(2.18) q
si(t) = (p(t)-+q(t)r1(t))sl(t), s;(0) =1,
sé(t) = (-g(t)+q(t)r2(t))sl(t), 52(0) =0,
\

To obtain y'(0;)A) we use the two equations of (2.16) for t=A and we
also use the two boundary conditions (2.13); this gives four linear
algebraic equations from which we evaluate the four unknowns y(0;A),
y'(0;1), y(A;1), and y'(A;)A). Note again that the initial-value problem
for

, and s are solved only once; thereafter for any value

ol Tl il 2
of ) we need only solve the four algebraic equations to find y'(0;))

and substitute into (2.17) to obtain the full solution y(t;A).
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Thus for both the sweep method and Scott's version of invariant
embedding, we replace the original boundary-value problem by the
Transformed Problem: solve three or four initial-value problems (for
ordinary differential equations) and one small linear system of algebraic

equations.

2.6 Integral Equations. By using an appropriate Green's function we can

transform our original boundary-value problem into an integral equation.

As an illustration, consider the second-order problem (1.2) subject to
linear boundary conditions. Usually by subtracting from Yy an appropriate
linear fuaction, we can force the boundary conditions to be homogeneous.

We therefore consider

(2.19) y''(t) = f(t,y(t),y'(t)) for 0<t<1
subject to the homogeneous version of (1.6), namely

(2.20) SoY(0) + doy'(0) + ¢,y(1) + d;y'(1) = 0

If y=0 1is the only solution to y"=0 subject to (2.20) then we can

find the Green's function G(t,T) sc ithat y"(t) = g(t) and y satisfies

(2.20) if and only if

1

y(t) = [ 6(t,1)g(1)dr.
0

Applying this fact to g(t) = £(t,y(t),y"'(t)) in (2.19) yields the fact

that y solves (2.19), (2.20) if and only if y solves

1
(2.21) y(t) = I G(t,T)f(t,y(1),y" (1))dr for 05t S1
0

b o - o
- R N BRI G o e ~ o E ,l
oy - . at dmai il B
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In this generality we have replaced (2.19), (2.20) by an integro-

differential equation. For the important class of problems in which f

is independent of y', (2.21) becomes the integral equation

1
(2.22) y(t) = I G(t,t)f(T,y(T))dt for 05t <1,

0

Thus we replace the original boundary-value problem by a Transformed
Problem: solve for y in the integro-differential equation (2.21) or

in the integral equation (2.22)

3. DISCRETE MODELS OF TRANSFORMED PROBLEMS

We have seen a few of the many ways in which our original boundary-
value problem can be transformed into an equivalent problem; now we
want to discuss methods for launching a frontal assault on the Transformed
Problem. Although there are other methods available [Aktas-Stetter (1977)],
I will restrict myself to the most successful methods, namely finite

differences and projections, as approaches to discrete modeling.

3.1 Finite Differences. The basic idea here is to represent desired

functions g(t) for 0<t<1 by the values of g at some finite set of
points 05 £< gy <ren < tNS.l. We approximate g(ti) by some number G,
and generate relationships among the values Gi intended to model what
the (transformed) problem tells us about g. Such modeling methods are,
of course, very well known: we generally replace derivatives by divided
differences, integrals by quadrature sums, et cetera. We look briefly
at the models that result when finite differences are used with the

Tranformed Problems of Section 2.

- ————— ——————
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Finite Differences for the Original Problem

Basic finite differences for the original boundary-value problem
are, of course, very well known. For the first-order system (1.1), for
example, we discretize by letting t; = 0< t2 b SLA O S tN =1 and letting

the nx1 vector 51 approximate y(ti). Two simple, natural, and

effective schemes are to model the differential equation (1.1) either by

1 1
(3.1)
for 1SiSN-1
or by
Lt ympl 2 1 1 1
Chor "BP " C o B0 FE* St 35 T h) -
(3.2)

for 151 25N-1
and to model the nonlinear boundary conditions Q(Z(O),z(lj) =0 in (1.3) by

y=0 .

(3.3) 2(51’§N =

Under reasonable hypotheses; of course, this is a second-order method,

that is,

(3.4) ”Ei'z(ti)““’ 5 ch2 for 151iZXN, c independent of N,

where throughout this paper we use h to denote

(3.5) h = max{|t ; 15858-1).

t1|,

d4l




20

Higher order methods of course exist using more complicated difference

approximations for y' and/or more complicated sums of values of f.

Such methods can even be generated automatically as in the HODIE method
[Lynch-Rice (1977)].

Since the nonlinear equations (3.1), (3.3) or (3.2), (3.3) are
often solved by some linearization process and, since linear problems also
arise naturally, it is instructive to look briefly at the structure of,

say, (3.2) and (3.3), when the problem is linear. We therefore consider

again (2.4), namely

Z'(t) = é(t)z(t) + g(t), 201(0) +Biy(l) = e

X '-l =
Writing hi-'t“_l-t:i,-é1 ZQ(ti-.-hi/Z)’ and 8y E(ti+h1/2), the

equations (3.2), (3.3) take the form

(I-h,A)Z

= < < N-
41 (£+hi&1)£i + hi§ for 1 £1 SN-1

i
Bogy * By ~ &

In block matrix notation, this is

— - ~ - — T
By 0 R oviinw o b e 31 11 e
-21 !1 2 $ e 8 ¥ v ® % 8 @ 09 Ez h1§1
(3-6) 2 -22 Ez 9 C AN TRE IR SRR 09 £3 - h2§2
0 £ % W P . B® hasi ;
0 E " Bballbk AN-18N-1
= 4 VG Basst o

-

[ —
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involving an almost (exceot for the first block row) bi-diagonal matrix,

where P -l+hA M I-h,A

By Ay My=1-hA/. Although N may be quite large in

order to obtain much accuracy, the special structure of the Nn xNn matrix

in (3.6) allows the system to be solved efficiently.

Finite Differences for Variational Problems

We saw in Subsection 2.2 that second-order problems (1.2) subject to
separated linear boundary conditions (2.2) and not involving y' explicity
in the differential equation are often equivalent to minimizing J([y] in
(2.1). Since J involves an integral and a derivative, the natural finite
difference approach is to use»g;quadtature'sum and a divided difference.

A simple example is to let the*nStl vector éi approximate !(ti) and to

let the vectors Z, be chosen to minimize

N-1
(3.7) J (2] = §1 hi{% [(Zi+1—zi)/(ti+1-ti)]2 + F(t,,2,))

subject to

Zy ™ 8y Zu®mib

More complicated differences or quadratures lead to more involved functions

[Jn] to be minimized.

Finite Differences for Shooting and its Variants

All of the variants of shooting described in Subsection 2.3 involve
solving some initial-value problems for ordinary differential equations
as an intermediate step on the way to solving a set of algebraic equations.

Finite differences can come into play be providing a way to solve these

e —

ke ; 'W ' 5
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U PR :




22

initial-value problems approximately. Any of the high quality initial-~
value codes such as those for variable-order Adams methods or Runge-Kutta-
Fehlberg methods can be used to solve the initial-value problem. As a

trivial example for multiple shooting we can replace Zi = s(t,zi(t)) for

T; <t <T“_1 and 15i<k-1 by

(3.8) ¢ S W T iy INEESE, AR AEET )
; =i,j+1 =i,j i,j+1 i,3 =2 71,341 2819j+1 2=1,j

where éi,j approximates Z(ti,j) and

T, =g LK S L s = =T

z 1,1 352 i,Ni 1§

and we can replace the initial conuition yi(Ti;gi) '51 with
(3.9) p =z

Given the initial data 25 for multiple shooting we can use (3.8) to

evaluate successively 21,2,41,3,"' Z from Zi,l =z For example,

’=1,Ni gio

in the linear case in which the original equation is
y'(£) - A(E)g(e) +g(t) for 0<t<1, By(0)+B y(l)=e

and in (2.4), the recursion (3.8) becomes merely

o o P, o T O Rl O L O s WL
where
g AR BN 1) NI A an AE 4N, L)
=i,j = 2 L,1="%1,3 S % | "1’.1 " v o 0% LSa % (- e TN q
1
B 03" 2% 40 ™ B %% "y t

R e T . <]
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Because we are using shooting we must also satisfy the continuity conditions

$3-) 8,8, T B,

and finally the boundary conditions

o + A = @
(3.12) 5051,1 §1Zk,Nk -

Finite Differences for Quasilinearization

Quasilinearization discussed in Subsection 2.4 merely transformed
the original nonlinear problem to a sequence of linear boundary-value
problems. We can therefore use finite differences, for example as in
(3.6), to solve each of these linear problems. In many cases using
finite differences on the linearized differential equation as described
here is the same as linearizing the nonlinear equations that result from

applying finite differences to the nonlinear differential equation.

Finite Differences for Continuation and Embedding

Finite differences can be used on the continuation problem just as
it was on the original (untransformed) problem. On the other hand, for
the embedding methods we needed to solve initial-value problems like
(2.14), (2.15), or (2.18). High quality finite difference methods for

initial-value problems can therefore be applied to solve these just as

for shooting methods.
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Finite Differences for Integral Equations

We saw in Subsection 2.6 how we could transform, for example, (2.19)-
(2.10) with f independent of y' into the integral equation (2.22),

namely
1
ylt) = J G(t,)f(T,y(1))dT
0

Letting t =0< g € *° < tN=l and approximating y(ti) by Zi as usual,
we can replace the integral in the equation with a quadrature sum. Using

the simple rectangle rule, for example, yields

N-1
(3.13) z, = j);'il (£ 4~ E6(E € )E(E,,2,)

As usual, more complicated quadrature formulas yield solutions of higher

order accuracy.

3.2 Projections. As we saw in Subsection 3.1, various discrete problems

result from using finite differences on the various Transformed Problems.
Although we considered six different types of Transformed Problems, there
were only four different ways finite differences were used: i) directly

on boundary-value problems (in the original problem, in quasi-linearized
problems, and in continuation problems); ii) on variational problems;

iii) on initial-value problems (in shooting and its variants, and in
embedding methods); and iv) on integral equations. We will see in this
Subsection that the projection approach to discrete modeling gives different

models in the same four ways. First we sketch the projection idea itself.

e R8s




The projection approach can be viewed as a way to approximate the

solution to an equation

(3.14) Dx = F(x)

where D 1is a linear ovoerator from some linear vector space X into
some linear vector space Y and F 1is a possibly nonlinear operator from
X into Y. We choose Xh to be some finite dimensional subspace of X

and we let Yh be the finite-dimensional subspace of Y defined by

Yh:=th. Finally let Ph be some linear projection of Y into Yh’ S0

that - P is a linear operator for which Phyh==yh for all Yh tn ¥

h h’

The main idea is to seek an approximate solution x ta £3.14) dn X

h h
rather than in X; if Xy is in Xh however then th is in Yh while
generally F(xh) is not in Yh so that (3.14) cannot be solved in Xh.

Instead we modify F(xh) to PhF(xh) to get it into Yh. Thus we

approximate x solving (3.14) by x, solving

h

(3.15) Dx, = Py F(xy) ,

a finite-dimensional problem. General theorems are known on the existence
of xh and on the error x-xh ; these theorems involve the approxima-
tion properties of the subspaces xh and Yh and the precise nature of
the projection Ph.
For our problems, X and Y are spaces of functions defined on
0 t<1l, and elements Yh of Yh are usually represented as linear

combinations

h -alal +3202 + e +aLUL

of simple basis functions 01,...,0i for Yh of dimension L, so that

(3.15) defines a set of equations in the unknows S LEREEL

pa———
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Important choices for the subspaces Xh and Yh are the spline spaces
S(l,k,r). Here Il is a set of break points g0=()<gl o TR Y 0.
and k and r are integers with k20, r2-1. An element of S(I,k,r)

is a r times continuously differentiable (often vector-valued) function
on 0<t<1l which is defined by a (different) polynomial of degree at
most k-1 on each interval g, <t <E441° A sufficiently smooth function
f on 05tSZ1 can usually be approximated by some spline ¢ in S(Il,k,r)

to order k in the sense that max ]f(t)-—o(t)|= 6(|H|k) where
0SSt

£ An important fact is that every element of

;i‘

IH|= max
051301

S(l,k,r) can be written as a linear combination of special basis splines

€541~

(B-splines) each of which vanishes identically on all but a few adjacent

intervals ER‘<t <£i+ Such a basis is called a local B-spline basis.

1
In practice the projection Ph into Yh is usually defined by 1)
collocation conditions, ii) orthogonality (or Galerkin) conditions, or
iii) a mixture of collocation and orthogonality conditions. Collocation

conditions are of the form (Phy)(n) =y(n) for certain values n;

orthogonality (or Galerkin) conditions are of the form <Phy-y,W)=-0 where
¥ is some function and <-,-> denotes some inner product (usually
involving integrals) on our function spaces. We proceed now to discribe

briefly some projection methods.

Projection for the Original Problem, for

Quasilinearization, and for Continuation

As we saw in Subsection 3.1, the Tranformed Problems in these three

cases all are still explicitly described as two point boundary-value




|
|
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problems; to be specific, consider

y'(t) = f(t,y(t)) for O<t<1, Byy(0)+B,;y(0) =0,

where we assume homogeneous boundary conditions for convenience. Here
we can think of the space X as, say Cl[0,1], Y as C[0,1], the operator
D as é% » and the operator F as taking y into f(t,y(t)). If we

take Xh to be the spline subspace S(Il,k,r) subject to our homogeneous

boundary conditions above, then Yh =DX, 1is essentially S(Il,k-1,r-1)

h

(subject to some boundary conditions). Therefore if Ph denotes some
projection into this modified S(ll,k-1,r-1), our projection reduces to

finding g in S(I,k,r) satisfying
' = =
g' = PE(6,0), Bog(0) +Byg(1) =Q

If, for example, Ph is defined by some collocation conditions (Phy)(n) =

y(n), then we impose
(3.15) g'tm) = £(n,g(m));

similarly an orthogonality condition might take the form

1
(3.16) I [g'(t) - f(e,0(t))]¥(t)de =0 .
0

Note that if 0 1is expressed as a linear combination of local basis elements

(B-splines),

Bl Skt W

then (3.15) for example becomes




(3.17) a8+ +a gl (n) = £(n,a, @ () + -+ +a @ (M)

Since g;(n)-gi(n) =(0 except for only a few subscripts 1 because the

g's form a local basis, only a very few of the coefficients a are

i

explicitly involved in each collocation equation. This implies that

each equation in the system (3.15) for apsenesap in fact only involves

a few ag; this sparsity is what makes local bases important. Approxi-

mating y by elements of S(Il,k,r), if Ph is chosen carefully by carefully

selecting collocation points n or orthogonality functions !, gives
errors y-g of optimal order k for 05Xt <1l. In addition there are

usually special points in each interval gi -5 - of the grid I at

141

which much higher accuracy is obtained [Dupont (1976)]); this superconvergence

can be used to generate global approximations of this higher order, so

such results are important.

Projection for Shooting and Embedding

The important feature of the Transformed Problems produced by shooting
or embedding is that they are initial-value problems. The only effect this
has on the discussion just completed is to change the side conditions on
the splines to initial rather than boundary conditions. In other regards,
collocation and Galerkin projection methods look the same here as for

problems with explicit boundary conditions. Thus we consider these no further.

Projection for Integral Equations

If the Green's function is used to transform our original problem,

say of second-order, we end up with an integral equation
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R

1

y(t) = J G(t,T)f(T,y(T))dT.
0

In this case we can take X and Y to be C[0,1], D=I, and F as the
1

mapping from y to I G(t,T)f(t,y(1))dTr. Using splines ¢ to approxi-
0

mate y and collocation, for example, to define our projection gives us

conditions like

1
o(n) = I G(n,t)f(t,0(T))dT.
0

Note in this case that even if we represent ¢ in terms of local basis

functions 01 the resulting problem is not sparse because of the terms

1
j G(n,r)f(r,alqgr)-+...-+aLGi(T))dT which have contributions from every a.
0

Projection for Variational Problems

Although projection as I have described it does not strictly apply
to variational problems, the spirit of projection does apply. Recall from
Subsection 2.2 that we are considering the problem of minimizing

1

T TSI IR TN

0

subject to

y(0) = 0, y(1) = 0 .

One of the ideas behind projection was to seek an approximate solution in
a finite~dimensional subspace. Applying the same idea here we replace vy

..,0 and then choose

by a18i4--'--+a & for some chosen functions O L

L'L i

a to minimize

178y

aile . DSVLL TR
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J(al,...,a]‘) = J[3101+---+&L0L] .

This is commonly called the Rayleigh-Ritz method. It is in fact strongly
related to a projection method since extremizing J 1is strongly related
to making V33=g; this is the same as using projection with orthogonality

1

conditions determined by Gi and the inner product (Gi,g)*- J

Oi(t)g(t)dt.
0

4. SOLUTION TECHNIOUES FOR DISCRETE MODELS

-

This Section contains much less detaii than its predecessors. Pri-
marily I want to emphasize the fact that transforming a problem (as in
Section 2) and then developing a finite-dimensional discrete model of the
Transformed Problem (as in Section 3) do not a method make! There still
remains the formidable task of solving for the solution of the discrete
problem, and there are usually very many computational techniques for doing
this; only when the solution technique is known is the complete algorithm
for the boundary-value problem finally specified. Each of our discrete
models produced either a finite-dimensional minimization problem, or a finite
system of nonlinear algebraic equations, or a finite system of linear
algebraic equations.

Quite a number of distinct methods are available for minimizing a
function of several variables [Murray (1972)], the problem which results
from discrete models of the variational version of boundary-value problems;
conjugate direction and variable metric methods are among the most powerful.
Because our problems often have special structure, such as having many

variables and a sparse Hessian, techniques should be used which are designed

to make use of such structure,

i

WA A b 1

C W i e bl 0 =MW, <
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Similarly many methods are available [Ortega-Rheinboldt (1970)]
for solving the finite systems of nonlinear algebraic equations which
result from the original problem, the shooting, and the integral equation
approaches to boundary-value problems; among the most popular are the
quasi-Newton update methods which essentially use Newton's method only
with rough approximations to the Jacobian matrix of the nonlinear system.
The systems arising from the original problem and from the integral equa~
tion approaches usually have many more unknowns than in the shooting
systems. Systems for the original poblem are usually sparse while those
for the integral equation are usually dense. Again special methods should
be used depending on the svstem's structure.

Since systems of linear algebraic equations often arise from methods
to solve nonlinear equations as well as from linear differential equations
with linear boundary conditions, methods for solving linear algebraic
systems are fundamental to solution techniques for our discrete models.
Again, although we often think only of straightforward Gauss elimination,
there are many techniques available for solving linear systems. A wide
variety of iterative methods can be used, especially for sparse problems.
In addition, there are many choices as to how to perform direct elimination.
Consider, for example, finite differences for the original problem which
leads to a linear system as in (3.6) that is almost block bi-diagonal.
Different procedures result from considering the matrix as full, as banded,
as block banded, et cetera; these differ primarily in how much information
is retained about the location of zeroes. The work required and the accuracy
obtained will also differ among the procedures, and it is important to

determine which procedures are "best" for solving a given discrete problen.

S
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One of the important practical areas of investigation now is that
of determining which solution technique should be used on a given discrete
model. This is a vital area since the efficiency and accuracy of the
solution technique can make or break a complete algorithm; I have heard
of a high-quality multiple~shooting code which was improved by a factor

of ten by improving its nonlinear equation solver.

5. RELATIONSHIPS AMONG COMPLETE ALGORITHMS

We have indicated that a complete algorithm is specified by three
"co-ordinates': a Transformed Problem, a Discrete Model, and a Solution
Technique. Unfortunately, different sets of co-ordinates can describe
identical (or very similar) complete algorithms. In this Section I want
to indicate a few relationships among such algorithms. I will not compare
algorithms in the sense of saying which is "better'", since that question
can only be addressed in terms of specific computer codes implementing
the algorithms, specific sets of test-problem classes, and specific
criteria for measuring "goodness'; there is a great need for such compari-
sons to be performed with the same care that went into the testing of
codes for initial~value problems [Hull (1975), Hull et al. (1972),
Davenport et al. (1975)].

We remarked earlier on one equivalence among algorithms. In using
the Rayleigh-Ritz discrete model for the variational formulation of the
problem, if we set equal to zero the gradient of the function of finitely
many variables to be minimized we obtain a Galerkin projection model for
the original boundary-value problem. Similarly if we set to zero the

gradient of the function to be minimized in the finite-difference method

o ileien o
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of the variational formulation, then we obtain a finite~difference model
of the original problem.

It has aiso been shown that certain spline collocation procedures
are identical to finite~difference procedures when both are applied to
the original problem. For example, using the spline space S(J1,2,0) of
continuous piecewise linear functions on the first-order problem (1.1)
with collocation at the middle of interval between break points yields
precisely the finite-difference equations (3.2) if the points t, are

-

the break-points and 51 denotes the value of the spline at ti.
At present it seems to be generally believed that the most competi-
tive methods for boundary-~value problems are based on projection for the
original problem, finite differences for the original problem, finite
differences for shooting and its variants, and finite differences for
embedding; I therefore want to look briefly at the relationships among
these procedures. We have already seen a relationship between finite
differences and projection for the original problem, so I want to examine
finite differences for the original problem, for shooting, and for
embedding. For linear problems the relationships are very striking, since
the overall methods can be identical! For nonlinear problems the same
methods are not necessarily identical but are very similar. Simply to

convey the idea here we look at linear first-order problems.

Consider first simple shooting for the linear scalar problem

y' = A(t)y +8(t), Byy(0) +B;y(1) =e

where we implement shooting by the simple finite-difference method (3.2);

letting Z, approximate y(ti), we get the recursion formulas appearing

i
just before (3.6). Suppose, to be precise, we take six points
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t0-0<tl< t2< t3< t,< t‘5< t6-1. Then for simple shooting we try to

find z so that choosing

Z,. =z, M

= &4 % =
1 P Zi+higi for 1542525, Boz+BlZ6 e

4o " Ty

In shooting we solve the above recursion for Z6 in terms of 2z and
then use this plus the boundary condition Boz-+BIZ6=-e to select z

correctly. If we write the above recursion and boundary condition in

matrix notation, we obtain

B 0 0 0 0 -T né 4 ; :
0 Bl 1 e
—P1 Ml 0 0 0 0 22 hlg1
0 -P2 M2 0 0 0 Z3 h2g2
(5.1) 0 0 -P3 M3 0 0 Zé i h3g3
0 P
0 0 P4 M4 0 Z5 haha
0 0 0 0 —P5 MS Z6 h585
. - L o L .

which is precisely (3.6), the equations we solved for finite differences

applied to the original problem. Thus finite differences for simple

shooting and for the original problem give the same answers. Moreover,
we can interpret the way in which shooting solves for 26 in terms of
z'-Z1 in the language of an elimination method for solving (3.6) or (5.1)
for finite differences on the original problem. In (5.1), use the (2,2)
element Ml to eliminate the (3,2) ele-ent-Pz and divide the second row

by the (2,2) element. Next use the (3,3) element to eliminate the (4,3)
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element and divide row three by the (3,3) element. Keeping this up

we eventually transform the matrix in (5.1) into

B, 0 0 0 0 B1

X L 0 0 0 0

X 0 I 0 0 0
(5.2)

X 0 0 1 0 0

X 0 0 0 I 0

X 0 0 0 0 I J

where X denotes the presence of some nonzero element. The last row
of (5.2) expresses Zg in terms of 21’ as in shooting. If we now
solve for Z1 between the first and last rows in (5.2) and substitute
the computed Z1 into the equations (5.2), we obtain all the values
Z;, precisely as in shooting. Therefore, not only do we produce the

same solutions by the two procedures, but also finite differences for

simple shooting on linear problems is computationally step by step

equivalent with a particular elimination method for solving the linear

system resulting from the same finite difference method for the original

problem. It is important to note above that we had to use the same
finite difference grid points ty for both methods. For the boundary-
value approach, these points must be chosen in advance; in shooting,

initial-value codes usually select the grid points automatically. Thus

the two methods are identical if we can somehow determine the appropriate
grid points in the shooting approach. This illustrates the importance

of selecting good grid points for finite differences applied to the

boundary-value problems.
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By a slight generalization on the preceding argument we can show
that finite differences for multiple shooting is identical step by
step with an elimination method for the finite-difference method for
the boundary-value problem. Likewise, both simple and multiple super-
position are identical with an elimination process. Somewhat more
complex is the fact that the re-orthogonalization process implemented
with finite differences is identical step by step with a solution
technique for the finite difference equations (3.6) for the original
problem; this solution technique first eliminates as for multiple
shooting and then performs an orthogonal simularity transformation
(based on the matrices Q in (2.8)) so as to make all of the entries
in the matrix upper-triangular as in (2.8). Also it can be shown that
finite differences on the sweep method of embedding is identical with
standard Gauss elimination in (3.6).

Thus finite differences for the original problem, for shooting and
its variants and for embedding only differ by being different solution
techniques for the same set of equations (3.6). This does not mean
that the methods are not very different; different solution techniques
can have drastically different results in the presence of rounding error.
What our statement does mean is that it is reasonable to concentrate on
alternatives to Gauss elimination in order to solve (3.6). Again I
observe also that finite-difference methods for shooting and embedding
have the ability to select grid points dynamically, while the finite-

difference method for the original problem selects grid points in advance.

6. ACCELERATING CONVERGENCE AND ESTIMATING ERRORS

For simplicity we begin the discussion of this topic in a simpler
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setting than differential equations. Suppose that there is some
marvelous number YO that we wish to compute, and that as some posi-
tive parameter h tends to zero we are instead able to compute some

approximation Y(h) to Yo. The problem of error estimation is

obviously that of estimating the size of the error Y(h)-—Yo; the problem
of acceleration is that of generating another scheme ?(h) for which
its error ?(h)—Y0 is "much" smaller than Y(h)-YO. The two problems

are closely related: if e(h) 1is an accurate estimate of Y(h)—Yo

then surely ?(h) =Y(h)-e(h) is an accelerated estimate of Y_ =Y(h) -

0
(Y(h)-YO). while if some ?(h) is "much" nearer Y. than is Y(h)

0
then surely e(h) SY(h);§(h) is very near Y(h)-Y0 which is the true
error. I will first phrase my discussion in terms of accelerating
convergence.

Three convergence-acceleration devices which have been used for
boundary-value problems are Richardson extrapolation [Joyce (1971)],
iterated deferred correction [Pereyra (1967)], and iterated defect
correction [Frank (1976)]. Richardson extrapolation computes both Y(h)
and Y(rh) for some r <1 and uses some theoretical information on the
behavior of Y(h)-—YO in order to compute an improved ?(h); for differ-
ential equations this involves computations on two discretizations in
order to improve the accuracy on the less accurate of the two solutions
(the one with the more crude discretization). Both deferred correction
and defect correction are much more complicated than Richardson extra-
polation but have the advantage of avoiding computations on a refined

discretization. Experiments indicate the deferred correction and defect '

correction are more efficient than Richardson extrapolation, but the
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methods are too complex to explain here.
There are a number of other methods for estimating errors Y(h)—Yo,
most of which require knowledge of the asymptotic nature of the error.

For example, if it is known that
¥(h)-Y, = T(V)hP +6(hPH)

for known p >0 and for a known expression T(Y) in Y, then one can
first compute Y(h) and then estimate the error by Th(Y(h))hp where
Th(y) denotes some approximation scheme for estimating T(Y), such as
a divided difference to approximate a derivative.

Returning to the discussion of differential equations, what we really
want is an estimate of the error in approximaing a solution y(t) at
each t; several of the estimation schemes suggested above have been used
to do just that for discrete models of the original boundary-value problem.
In shooting and embedding we are solving initial-value problems, and most

codes for such problems estimate the local or one-step error rather than

the global or total error we desire. Clearly the two errors are related,
but it is not fair to say, as some have, that error estimation is easier
for initial-value problems; the fallacy of the statement comes from

measuring two different errors.

7. ERROR CONTROL AND PARAMETER SELECTION

There would be little point to Section 6 on estimating error if we
had no use for the estimate. What we usually want is to control the
error, in the sense that we want to make the error less than some tolerance
provided by a user cf our method at as low a cost as possible; usually

this means controlling the error so that it will be only a little smaller
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than the tolerance. In our little mythical example in Section 6 cf
computing something called Y(h) to approximate YO, once h is
chosen the error is determined; thus to control the error in any way we
must appropriately select the value of our parameter h. In the real
methods we discussed in Sections 2,3, and 4, there are many parameters
at our disposal. The first, of course, are the Transformed Problem,

the Discrete Model, and the Solution Technique we choose to use. After
choosing these, we still face many parameters. For example: with

finite differences, how many points t; to use and where to place them,
and what difference approximations to use; for spline collocation, how
many break points to use and where to place them, where to place collo-
cation points, what degree and how smooth splines to use; for shooting,
how many shooting points to use and where to place them; et cetera.

Some methods appear to require a uniform spacing of some mesh (break
points or collocation points or finite difference points); this can be
disastrous on problems whose solutions change slowly in some region

and very rapidly in others. Selecting the mesh in this case is very
difficult; an interesting idea [Russell-Christiansen (1978)] is to use
different uniform meshes on various subintervals of 0<t <1 and to
stop computing in a region of the interval in which the tolerance has
been met. While the user of a computer code can sometimes wisely select
parameters, in many cases a good choice of parameters depends on proper-
ties of the solution about which the user has no ideas. For this reason
an important trend in code development is the inclusion of procedures
which automatically select parameters in an attempt to attain the desired
error efficiently. This is a vital research problem on which some

progress is being made but where much remains to be done.
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8. CONCLUSIONS

My aim in this paper has been to explain briefly what each of a
variety of methods is, how methods relate to one another, and where are
the difficulties today that stimulate interesting research problems.

To describe what the methods are and how they relate we viewed each
method as a Solution Technique for some Discrete Model of a Transformed
Problem; this was done in the setting of two simple model problems
(1.1), (1.2) but extends readily to most other types of boundary-value
problems involving eigenvalues, multi-point boundary conditions, et
cetera. Those areas which in my opinion deserve much more study and
development include: numerical effects and efficiency of different
methods of solving the linear algebraic systems that arise; methods for
solving the special nonlinear algebraic systems that arise; comparative
performance of codes implementing various methods on carefully chosen
classes of test problems; and methods for estimating and controlling

global errors by automatic selection of parameters of the method.
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